Modulator: The old vs. the new one
(1) ECS 332
"Analog message"
Start with $m(t)$

$$
a(t)=m(t) \cos \left(2 \pi f_{c} t\right)
$$

(2) ECS 452
"Digital message"
Start with bit stream sequence
010101000

$$
A_{m} g(t)(0)\left(2 \pi f_{c} t\right)
$$

(pass band)
Note:-one-shot transmission work with one block of bits at a time.

- Repeat the process for the next box.

Review: We are now working on the modulator par of the system

Digital Modulator:
(1) Group the bit-stream into blocks of b bits.
(2) There are $2^{b} \equiv M$ possibilities:

$$
\text { case: } 1,2,3, \ldots, M
$$

(3) Map each case to wave form

$$
m \rightarrow \Delta_{m}(t)
$$

In chapter 4 , we consider the M possible wave forms (signals)

$$
\Delta_{1}(t), A_{2}(t), \cdots, A_{m}(t)
$$

$$
\downarrow \text { GOOP }
$$

$$
\vec{\lambda}^{(1)}, \vec{B}^{(2)}, \ldots, \vec{B}^{(n)}
$$

In chapter 4, we know that talking about norm, inner-product, distance among the $A_{n}(t)$
is exactly the same as talking about the quantities among the $\vec{s}^{(m)}$

5 Constellation for Digital Modulation Schemes

5.1 PAM

Definition 5.1. Recall, from 3.6, that PAM signal waveforms are represented as
Gsor:

$$
s_{m}(t)=A_{m} p(t), \quad 1 \leq m \leq M
$$

where $p(t)$ is a pulse and $A_{m} \in \mathcal{A}$.

$$
u_{1}(t)=s_{1}(t)
$$

$P(t)$ is a p se $A_{m} \in \mathcal{A}$.

$$
\phi_{1}(t)=\frac{\tilde{w}_{1}}{\left\|w_{1}\right\|}=\frac{\lambda_{1} p(t)}{\left\|A_{2} p(t)\right\|}=\frac{p(t)}{\sqrt{\varepsilon_{p}}}
$$

5.2. Clearly, PAM signals are one-dimensional since all are multiples of the same basic signals. We define

$$
\begin{aligned}
&\|p(t)\|=\sqrt{\langle p p p\rangle}=\sqrt{\varepsilon_{p}} \\
& m_{2}(t)=s_{2}(t)-p r o j_{s_{1}} s_{2} \\
&=A_{2} p-\left\langle s_{2}, s_{1}\right\rangle s_{1} \\
&\left\langle A_{1}, s_{1}\right\rangle
\end{aligned}
$$

$$
\phi(t)=\frac{p(t)}{\sqrt{\mathcal{E}_{p}}}
$$

as the basis for the PAM signals above. In which case,

$$
s_{m}(t)=\underbrace{A_{m} \sqrt{\mathcal{E}_{p}}} \phi(t), \quad 1 \leq m \leq M
$$

and the corresponding one-dimensional vector representation is

$$
\boldsymbol{s}^{(m)}=A_{m} \sqrt{\mathcal{E}_{p}} .
$$

The corresponding signal space diagrams for $M=2, M=4$, and $M=8$ are shown in Figure 4.
5.3. The mapping or assignment of b information bits to the $M=2^{b}$ possible signal amplitudes may be done in a number of ways. The preferred assignment is one in which the adjacent signal amplitudes differ by one binary digit. This mapping is called Gray coding.

- It is important in the demodulation of the signal because the most likely errors caused by noise involve the erroneous selection of an adjacent amplitude to the transmitted signal amplitude. In such a case, only a single bit error occurs in the b-bit sequence.
5.4. For carrier-modulated bandpass PAM signals, we have

$$
{\underset{\varepsilon}{\boldsymbol{\varepsilon}}}^{p(t)}=\underbrace{g(t)}_{\stackrel{\downarrow}{\varepsilon_{g_{19}}}} \cos \left(2 \pi f_{c} t\right) .
$$

$11010 \longrightarrow \mid \overrightarrow{\text { Modulator }} \longrightarrow A_{m}(t)$

(a) $M=2$

(b) $M=4$

(c) $M=8$

Figure 4: Constellation for PAM signaling
Note that $\mathcal{E}_{p}=\frac{\mathcal{E}_{g}}{2} . \quad \rho(t)=g(t) \cos \left(2 \pi f_{c} t\right)$
(1)

$$
\begin{aligned}
\varepsilon_{p} & =\int_{-\infty}^{\infty}|p(t)|^{2} d t \\
& =\int_{-\infty}^{\infty}|g(t)|^{2} \cos ^{2}\left(2 \pi t_{0} t\right) d t
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \text { (2) } p(t)=g(t) \cos \left(2 \pi f_{c} t+\phi\right) \\
& \cos \left(2 \pi f_{c} t+\phi\right)=\frac{1}{2}\left(e^{j \phi} e^{j 2 \pi f_{c} t}+e^{-j \phi} e^{-j 2 \pi f_{c} t}\right)= \\
& p=g \cos \xrightarrow{J} \frac{1}{2}\left(e^{j \phi} G\left(f-f_{c}\right)+e^{-j \phi} G\left(f+f_{c}\right)\right)=P
\end{aligned}
$$

$$
\varepsilon_{p}=\int_{-\infty}^{\infty}|P(f)|^{2} d f=\int_{-\infty}^{\infty} P(f) P^{*}(x) d f
$$

$$
=\int \frac{1}{4}\left(e^{j \phi} G\left(f-f_{c}\right)+e^{-j \phi} d\left(f+f_{c}\right)\right)\left(e^{-j \phi} G^{*}\left(f-f_{c}\right)+e^{j \phi} G^{*}\left(f_{+}+f_{c}\right)\right) d t
$$

-The bandpass digital PAM is also called amplitude-shift keying (ASK).

$$
=\frac{1}{4}(\underbrace{\left.\left.\int_{-\infty}^{\infty} G\left(f-f_{0}\right)\right|^{2} d f+\int_{-\infty}^{\int_{s}}\left|\sigma\left(f+f_{c}\right)\right|^{2} d f+0+0\right)=\frac{1}{2} \varepsilon_{g} .}_{\varepsilon_{g}}
$$

Bandpars PAM

$$
\begin{aligned}
& p(t)=g(t) \cos \left(2 \pi f_{c} t\right) \\
& \phi(t)=\frac{p(t)}{\sqrt{\varepsilon_{p}}}=\frac{g(t) \cos \left(2 \pi f_{c} t\right)}{\sqrt{\frac{\varepsilon_{g}}{2}}}=\sqrt{\frac{20}{\varepsilon_{g}}} g(t) \cos \left(2 \pi f_{c} t\right)
\end{aligned}
$$

$$
\begin{aligned}
\partial_{m}(t) & =A_{m} p(t) \\
& =A_{m} \sqrt{\varepsilon_{p}} \phi(t) \\
& =A_{n} \sqrt{\frac{\varepsilon_{g}}{2}} \phi(t) \\
\vec{\partial}^{(m)} & =A_{n} \sqrt{\varepsilon_{y / 2}}
\end{aligned}
$$

5.2 Phase-Shift Keying (PSK)

Definition 5.5. In digital phase modulation, the M signal waveforms are represented as

$$
\begin{equation*}
s_{m}(t)=g(t) \cos (2 \pi f_{c} t+\underbrace{\frac{2 \pi}{M}(m-1)}_{\boldsymbol{\theta}_{m}}), \quad m=1,2, \ldots, M \tag{2}
\end{equation*}
$$

where

- $g(t)$ is the signal pulse shape and
- $\theta_{m}=\frac{2 \pi}{M}(m-1), m=1,2, \ldots, M$ is the M possible phases of the carrier that convey the transmitted information.
Digital phase modulation is usually called phase-shift keying (PSK).
5.6. The PSK signal waveforms defined in (2) have equal energy:

$$
\begin{aligned}
& \varepsilon_{m}=\frac{\varepsilon_{g}}{2} \\
& \varepsilon_{\text {avg }}=\frac{\varepsilon_{g}}{2}
\end{aligned}
$$

5.7. Note that

we have

$$
s_{m}(t)=g(t) \cos \left(\theta_{m}\right) \cos \left(2 \pi f_{c} t\right)-g(t) \sin \left(\theta_{m}\right) \sin \left(2 \pi f_{c} t\right) .
$$

(b) $\underbrace{g(t) \cos \left(2 \pi f_{c} t\right)}_{\boldsymbol{x}(t)}$ and $-\underbrace{g(t) \sin \left(2 \pi f_{c}\right.}_{\boldsymbol{y}(t)} t)$ are orthogonal.

$$
r(t)=g(t) \cos \left(2 \pi f_{c} t\right) \xrightarrow{\rightrightarrows} x(f)=\frac{1}{2}\left(G\left(f-f_{c}\right)+G\left(f+f_{c}\right)\right)
$$

$$
y(t)=g(t) \sin \left(2 \pi t_{c} t\right) \quad \xrightarrow{\xi} Y^{*}(f)=\frac{1}{2(j)}\left(G^{*}\left(f-f_{c}\right)-G^{*}\left(f+f_{c}\right)\right)
$$

$$
\langle x, y\rangle=\int^{\infty} x(f) Y^{*}(f) d f=-\frac{1}{4}\left(\varepsilon_{S}-\varepsilon_{S}\right)+0-0=0
$$

Therefore, we define

$$
\begin{align*}
& \phi_{1}(t)=\sqrt{\frac{2}{\mathcal{E}_{g}} g(t) \cos \left(2 \pi f_{c} t\right),} \tag{3}\\
& \phi_{2}(t)=-\sqrt{\frac{2}{\mathcal{E}_{g}} g(t) \sin \left(2 \pi f_{c} t\right) .} \tag{4}
\end{align*}
$$

In which case,

$$
s_{m}(t)=\sqrt{\frac{\mathcal{E}_{g}}{2}} \cos \left(\theta_{m}\right) \phi_{1}(t)+\sqrt{\frac{\mathcal{E}_{g}}{2}} \sin \left(\theta_{m}\right) \phi_{2}(t) .
$$

Therefore the signal space dimensionality is $N=2$ and the resulting vector representations are

$$
\boldsymbol{s}^{(m)}=\left(\sqrt{\frac{\mathcal{E}_{g}}{2}} \cos \left(\theta_{m}\right), \sqrt{\frac{\mathcal{E}_{g}}{2}} \sin \left(\theta_{m}\right)\right)^{\top} .
$$

5.8. Signal space diagrams for BPSK (binary PSK, $M=2$), QPSK (quaternary PSK, $M=4$), and 8-PSK are shown in Figure 5 .

Figure 5: Signal space diagrams for BPSK, QPSK, and 8-PSK.
Note that BPSK corresponds to one-dimensional signals, which are identical to binary PAM signals.

5.3 Quadrature Amplitude Modulation (QAM)

Definition 5.9. In Quadrature Amplitude Modulation (QAM), two separate b-bit symbols from the information sequence on two quadrature carriers $\cos \left(2 \pi f_{c} t\right)$ and $\sin \left(2 \pi f_{c} t\right)$ are transmitted simultaneously. The corresponding signal waveforms may be expressed as

$$
\begin{equation*}
s_{m}(t)=A_{m}^{(I)} g(t) \cos \left(2 \pi f_{c} t\right)-A_{m}^{(Q)} g(t) \sin \left(2 \pi f_{c} t\right), \quad m=1,2, \ldots, M \tag{5}
\end{equation*}
$$

where

- $A_{m}^{(I)}$ and $A_{m}^{(Q)}$ are the information-bearing signal amplitudes of the quadrature carriers and
- $g(t)$ is the signal pulse.

Equivalently,

$$
\begin{align*}
s_{m}(t) & =\operatorname{Re}\left\{\left(A_{m}^{(I)}+j A_{m}^{(Q)}\right) g(t) e^{j 2 \pi f_{c} t}\right\} \tag{6}\\
& =\operatorname{Re}\left\{r_{m} e^{j \theta_{m}} g(t) e^{j 2 \pi f_{c} t}\right\} \tag{7}\\
& =r_{m} \cos \left(2 \pi f_{c} t+\theta_{m}\right) g(t) \tag{8}
\end{align*}
$$

where

$$
\text { - } r_{m}=\sqrt{\left(A_{m}^{(I)}\right)^{2}+\left(A_{m}^{(Q)}\right)^{2}} \text { is the magnitude }
$$ and

- θ_{m} is the argument or phase
of the complex number $A_{m}^{(I)}+j A_{m}^{(Q)}$.
5.10. From (8), it is apparent that the QAM signal waveforms may be viewed as combined amplitude $\left(r_{m}\right)$ and phase $\left(\theta_{m}\right)$ modulation. In fact, we may select any combination of M_{1}-level PAM and M_{2}-phase PSK to construct an $M=M_{1} M_{2}$ combined PAM-PSK signal constellation.
- If $M_{1}=2^{b_{1}}$ and $M_{2}=2^{b_{2}}$, the combined PAM-PSK signal constellation results in the simultaneous transmission of $b_{1}+b_{2}=\log _{2} M_{1} M_{2}$ binary digits occurring at a symbol rate $R /\left(b_{1}+b_{2}\right)$.
5.11. From (5), it can be seen that, similar to the PSK case, $\phi_{1}(t)$ and $\phi_{2}(t)$ given in (3) and (4) can be used as an orthonormal basis for QAM signals. The dimensionality of the signal space for QAM is $N=2$. Using this basis, we have

$$
s_{m}(t)=A_{m}^{(I)} \sqrt{\frac{\mathcal{E}_{g}}{2}} \phi_{1}(t)+A_{m}^{(Q)} \sqrt{\frac{\mathcal{E}_{g}}{2}} \phi_{2}(t)
$$

which results in vector representations of the form

$$
\boldsymbol{s}^{(m)}=\left(A_{m}^{(I)} \sqrt{\frac{\mathcal{E}_{g}}{2}}, A_{m}^{(Q)} \sqrt{\frac{\mathcal{E}_{g}}{2}}\right)^{\top}
$$

5.12. Examples of signal space diagrams for combined PAM-PSK are shown in Figure 6, for $M=8$ and $M=16$.

Figure 6: Examples of combined PAM-PSK constellations.
In the special case where the signal amplitudes are taken from the set of discrete values $\mathcal{A}=\{(2 m-1-M), m=1,2, \ldots, M\}$, the signal space diagram is rectangular, as shown in Figure 7.
5.13. PAM and PSK can be considered as special cases of QAM. In QAM signaling, both amplitude and phase carry information, whereas in PAM and PSK only amplitude or phase carries the information.

Figure 7: Several signal space diagrams for rectangular QAM.

5.4 Orthogonal Signaling

Definition 5.14. In orthogonal signaling, the waveforms $s_{m}(t)$ are orthogonal and of equal energy \mathcal{E}. In which case, the orthonormal set $\left\{\phi_{m}(t), 1 \leq m \leq N\right\}$ defined by

$$
\phi_{m}(t)=\frac{s_{m}(t)}{\sqrt{\mathcal{E}}}, \quad 1 \leq m \leq M
$$

can be used as an orthonormal basis for representation of $\left\{s_{m}(t), 1 \leq m \leq M\right\}$. The resulting vector representation of the signals will be $\varnothing_{L}(t)$

$$
\begin{aligned}
s^{(1)} & =(\sqrt{\boldsymbol{\varepsilon}}, 0,0, \ldots, 0) \\
s^{(2)} & =(0, \sqrt{\boldsymbol{\varepsilon}}, 0, \ldots, 0) \\
\vdots & =\vdots \\
s^{(M)} & =(0,0,0, \ldots, \sqrt{\varepsilon})
\end{aligned}
$$

